EPA Region 5 Records Ctr.

1421 North Elston Ave. Chicago, illinois 60622 Phone (312) 486-2123 Fax (312) 486-0004

Friday, April 12, 1991

Jepscor Metals, Inc. P.O. Box 200 Dixon, IL 61021

Attn: Mr. Elwin Millsap

Subject: Level II Environmental Investigation at 3321 South

Pulaski Road, Chicago, Illinois

Dear Mr. Millsap,

Enclosed is the Level II report for the soil investigation performed at 3321 South Pulaski Road, Chicago, Illinois. The Level II report includes laboratory analysis from soil samples collected during the course of the investigation. The Level II testing was recommended in our Level I property assessment report dated December 19, 1990, (project number P91-11033) and was initiated upon your request.

If you have any questions regarding this report or would like to expand this investigation, please feel free to contact me at any time.

Sincerely.

Richard E. Schmidt Field Services Engineer

Attachments

project # P91-03010

LEVEL II

ENVIRONMENTAL INVESTIGATION

Performed For

Jepscor Metals, Inc. P.O. Box 200 Dixon, IL 61021

Site Location:

3321 South Pulaski Road Chicago, Illinois

By

Gabriel Laboratories, Ltd. 1421 North Elston Avenue Chicago, Illinois 60622

Submitted on 4/12/91 by:

Richard E. Schmidt Field Services Engineer

Reviewed by:

Steven C. Sawyer Vice President

John Polich P.E. President

project # P91-03010

3321 South Pulaski Road, Chicago, Illinois Friday, April 12, 1991

Table of Contents

<u>pa</u>	<u>ige</u>
I. Introduction	1
II. Methodology	3
III. Data Review	5
IV. Summary/Conclusions	3
V. Appendix	2

Environmental & Energy Services

3321 South Pulaski Road, Chicago, Illinois Friday, April 12, 1991

I. Introduction

Gabriel Laboratories, Ltd. was retained by Mr. Elwin Millsap, of Jepscor Metals, Inc., to conduct a Level I property survey of the property and structures located at 3321 South Pulaski Road, Chicago, Illinois. This survey was performed on November 20, 1990.

In our Level I report, dated December 19, 1990, Gabriel recommended further investigation into the potential environmental liabilities present on site. Our Level I recommendations are reproduced below:

- 1) Oil staining was observed beneath the three 300-gallon above ground storage tanks located within the original building. Gabriel recommends performing a wipe sample in this area to test for the presence of PCBs. Additionally, soil borings should be performed in the same area to determine the extent of soil contamination (if any) that is present. Gabriel would also suggest fabricating a secondary form of containment (i.e. dike or tray) to contain any future leaks/spills.
- 2) Staining was also observed around the seven 55-gallon drums of waste oil and diesel fuel were found stored. Soil borings and a secondary form of containment are also recommended in this area.
- 3) Excessive staining of the soil was found beneath the two above ground storage tanks located outside the southwest corner of the steel building. The tanks had been used for storing diesel fuel. Gabriel recommends performing soil borings and analysis in this area.
- 4) Gabriel recommends performing additional site borings on the remainder of the property for the following reasons; the industrial nature and historical use of the property, the emplacement of underground storage tanks on the property, and the nearby rail road tracks (a rail spur is located on site). The samples obtained during drilling should be analyzed for common industrial contaminants (volatile organic compounds, RCRA metals, and PCBs).

The Level II investigation, initiated upon the request of Mr. Millsap, addressed the recommendations for soil testing and PCB analysis. Thirteen soil borings were performed on the site on March 11, 1991. Composite samples made from the soil borings were analyzed for volatile organic compounds and RCRA metals. One PBC wipe sample was collected on March 29, 1991, and was analyzed accordingly.

906riel laboratories, ltd. ___

3321 South Pulaski Road, Chicago, Illinois Friday, April 12, 1991

Section II of this report contains the sampling and analytical methodologies used in the completion of this project. Analytical results from samples collected during the borings are discussed in Section III of this report, and are contained within the appendix. Also included in the appendix are site sketches in which the tank and sampling locations are provided.

Environmental & Energy Services

3321 South Pulaski Road, Chicago, Illinois Friday, April 12, 1991

II. Methodology

During the course of the Level II Investigation performed at 3321 South Pulaski Road, Chicago, Illinois, samples were procured from various matrices in order to further evaluate the conditions present on site. The methodologies enacted during this investigation are presented below.

Subsurface Soil Borings

Three soil borings were performed by hand using an AMS soil auger bucket, and various extensions and accessories. A concrete coring machine was used within the building to expose the subsurface soil. The remaining ten soil borings were drilled utilizing a truck-mounted rotary drill rig. The boreholes were advanced by continuous flight auger method (ASTM Standard D 1452-80), with the use of various cutting bits and augers.

The soil borings were drilled to depths of approximately ten feet. The hand borings were dug to depths of four feet, except in areas were solid obstructions were encountered.

The subsurface soil boring locations were chosen in accordance with a visual inspection of the site with an emphasis on the potentially impacted areas that were outlined in our Level I report. Also, visual and olfactory observations made during the sample collection were used to determine additional boring locations.

Sample Collection and Compositing

Representative soil samples were obtained from the soil cores with a hand shovel and stainless steel spatula. All of the sampling equipment was cleaned with an alkaline detergent and water in between the collection of each sample. Spatulas and hand shovels were then rinsed with deionized water to further minimize the possibility of sample cross contamination.

Soil samples were placed in plastic-capped glass containers. The samples submitted for organics analysis were placed in septum vials with Teflon lined caps, to minimize organic release and sample cross contamination.

Composite samples were made from several of the boring locations in an attempt to reduce analytical costs. The table below includes which borings location samples were composited, and which analytical parameters were run.

3321 South Pulaski Road, Chicago, Illinois Friday, April 12, 1991

Gabriel	Boring	Analytical
log #	Location(s)	Parameters
2987-91 2988-91 2989-91 2990-91 2991-91 2992-91 2993-91 3880-91	composite of B-1, B-2 & B-3 composite of B-7, B-8 & B-9 surface sample beneath diesel tanks B-5 composite of B-4 & B-6 B-10 composite of B-11, B-12 & B-13 wipe sample below 300 gal ASTs	volatile organics, RCRA metals volatile organics, RCRA metals volatile organics volatile organics volatile organics volatile organics volatile organics volatile organics

PCB Wipe Sampling

PCB wipe samples are collected using an inert absorbant fabric and suitable solvent (hexane). The absorbant is moistened with the solvent and is wiped over a one hundred square centimeter area of the surface to be tested. The absorbant, solvent, and sample (residue on the fabric) are then placed in a sealed container and are submitted for laboratory analysis.

Gabriel personnel collected one wipe sample beneath the three 300gallon above ground storage tanks found within the building. The sample was collected over a one hundred square centimeter area of the oil stained floor.

Laboratory Analyses

The seven samples submitted for volatile organics analysis were analyzed according to USEPA methods 601 and 8020, on a gas chromatograph.

Two samples were submitted for RCRA metals analysis. These metals include; arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis was performed on an Inductively Coupled Plasma spectrometer (ICP) and/or Atomic Absorption spectrometer (AA) according to USEPA method SW-846.

One PCB wipe sample was collected. The sample was analyzed according to USEPA method 8080 on a gas chromatograph.

90 briel laboratories, ltd. _ Environmental & Energy Services

3321 South Pulaski Road, Chicago, Illinois Friday, April 12, 1991

III. Data Review

Boring Log

The soil borings and underground fuel oil tank locations are marked on the site sketches included in the appendix of this report. The thirteen boring locations are labeled B-1 through B-13. Also included in the appendix are the results of all samples submitted for analysis.

The tables below summarize the soil conditions observed during the sampling.

Depth (feet)	Boring B-l	Boring B-2	Boring B-3	Boring B-4	Boring B-5
0.0	black soil	concrete	concrete	concrete	concrete
0.5	fill	fill	cinder fill	cinder fill	cinder fill
1.0	11	n	17	obstruction/	obstruction/
1.5	brown clay	н	11	end of boring	end of boring
2.0	n	brown clay	H	J	J
2.5	H	н	н		
3.0	II	m	•		
3.5	n	Ħ	Ħ		
4.0	11	M	*		
4.5	u	n	п		
5.0	n	n	•		
5.5	**	H	m		
6.0	·	••	black clay		
6.5	m	•			
7.0	n	H	11		
7.5	H	M	п		
8.0	11	n	н		
8.5	n	H	n		
9.0	w	11	•		
9.5	**	IT	m		
10.0	end of boring	end of boring	end of boring	,	

10.0	end	ο£	boring	end	ο£	boring	end	ο£	boring	
------	-----	----	--------	-----	----	--------	-----	----	--------	--

Depth (feet)	Boring B-6	Boring B-7	Boring B-8	Boring B-9	Boring B-10
0.0	concrete	concrete	concrete	black soil	asphalt
0.5	cinder fill	tt .	sand/gravel	fill	cinder fill
1.0	n	gravel	fill	II .	н
1.5	n	sand	"	17	Ħ
2.0	n	black soil	11	"	Ħ
2.5	brown clay	н	M	If	n
3.0	"	11	10	u .	brown/gray
3.5	end of boring	II .	n	н	clay
4.0	5	•	н	brown/gray	n

905riel laboratories, ltd. ___

3321 South Pulaski Road, Chicago, Illinois Friday, April 12, 1991

Depth (feet)	Boring B-6	Boring B-7	Boring B-8	Boring B-9	Boring B-10
4.5		n		clay	n
5.0		n	black clay	n	Ħ
5.5		n		H	black clay
6.0		7	m	Ħ	н
6.5		н		H	n
7.0		H	gray clay	п	n
7.5		brown clay	, ,	н	n
8.0		n	*	n	11
8.5		*	H	н	n
9.0		n	•	н	"
9.5		H	H	14	11
10.0		end of boring	end of boring	end of boring	end of boring

Depth (feet)	Boring B-11	Boring B-12	Boring B-13
0.0	asphalt	black soil	concrete
0.5	gravel	fill	gravel
1.0	cinder fill	H	black soil
1.5	н	Ħ	**
2.0	n	•	H
2.5	brown clay	*	n
3.0	н	•	n
3.5	н	W	н
4.0	н	gray clay	н
4.5	P0	H ,	black clay
5.0	N	m	H
5.5	black clay	black clay	H
6.0	n	n	black clay
6.5	н	•	"
7.0	11	•	brown clay
7.5	11	•	п
8.0	11	₩	н
8.5	11	•	m
9.0	11	m	н
9.5	•		Ħ
10.0	end of boring	end of boring	end of boring

Volatile Organics Analysis

The seven samples submitted for volatile organics analysis were tested for BETX compounds (benzene, ethylbenzene, toluene, and m+p xylenes) and 601 compounds (24 additional compounds). The results of analyses (including chromatograms) are included in the appendix of this report. The first column in the analytical reports contains the volatile organic compounds, the second column

906riel laboratories, Itd. ___

Environmental & Energy Services

3321 South Pulaski Road, Chicago, Illinois Friday, April 12, 1991

the detection limit, and the third the results. The letters BQL (below quantitation limit) in the result column indicate that particular compound was not found above the detection limit. The table below summarizes those compounds found above our detection limits for samples identified as containing volatile organic contamination. The results are expressed in parts per billion (ppb).

	GABRIE	L SAMPLE	NUMBER	(result	s expres	ssed in	ppb)
COMPOUND	2987-91	2988-91	2989-91	2990-91	2991-91	2992-91	2993-91
benzene	-	9	-	6	-	-	-
toluene	11	18	-	-	29	13	9
ethylbenzene	-	6	213	-	-	-	-
m+p xylenes	-	9	724	-	-	5	-
o-xylene	-	-	706	-	-	-	-
trichloroethene	-	-	-	•	-	8	•
tetrachloroethene	e -	-	-	20	-	-	-

Sample #2987-91 was composited from boring locations B-1, B-2 & B-3, and sample #2988-91 was composited from boring locations B-7, B-8 & B-9. Both composite samples were found to contain relatively low levels of BETX.

Sample #2989-91 was collected from the stained soil beneath the 300 and 500 gallon diesel fuel tanks. This sample was found to contain the highest levels of BETX. Sample #2992-91 was collected from boring location B-10, approximately ten feet west of the tanks. Sample #2993-90 was composited from boring locations B-11, B-12 and B-13, located even further away from the tanks (up to 20 feet). Petroleum odors were observed in the soil beneath the tank and at boring location B-10. A reduction in the amount of contaminants is evident in the samples collected away from the tanks.

Diesel fuel in 55-gallon drums and oil in three above ground tanks is stored in the building near the loading dock. Sample #2990-91 was collected from boring location B-5, located north of the tanks and drums. Twenty ppb of tetrachloroethene was found at B-5. Sample #2991-91 was collected from boring locations B-4 and B-6, located east and west of the tanks/drums, respectively. Twenty nine ppb of toluene was detected. No visual or olfactory evidence of contamination was observed during sampling in this area.

RCRA Metals Analysis

Two of the composite samples were also analyzed for the seven RCRA metals. A table summarizing the results is provided below:

3321 South Pulaski Road, Chicago, Illinois Friday, April 12, 1991

Log Number: Composite of:	2987-91 B-1, B-2 & B-3	2988-91 B-7, B-8 & B-9		
RCRA Metal	Total (ppm)	Total (ppm)		
arsenic	<10	<10		
barium	62	114		
cadmium	25	11		
chromium	21	23		
lead	84	99		
mercury	0.034	0.117		
selenium	<10	<10		
silver	<2.5	<2.5		

No arsenic, selenium, or silver was found in either sample above our detection limits of 10, 10, and 2.5 parts per million (ppm), respectively.

PCB Analysis

One PCB wipe sample was collected from the oil stained floor beneath the 300-gallon above ground storage tanks. The sample was collected over an area of 100 square centimeters. The analytical results indicate none of the seven PCB Aroclors were found above our detection limit of 10.0 ug.

3321 South Pulaski Road, Chicago, Illinois Friday, April 12, 1991

V. Summary/Conclusions

The two composite samples analyzed for RCRA metals were found to have typical levels of the eight metals for city soil. The two composites were made from soil collected from eight boring locations (B-1 through B-3 and B-7 through B-9). The boring locations were spread across the site and were chosen ideally to represent the soil conditions of the entire site. The eight RCRA metals are common target elements which are used in determining the hazardous nature of materials.

The PCB wipe sample was collected in the oil stained area beneath the three above ground storage tanks located within the building. PCBs are occasionally found in oil products. The analysis indicates that none of the eight PCB aroclors were found above our detection limit of 10 ug in the 100 square centimeter wipe sample. Federal regulations generally require decontamination of PCB spills to 10 micrograms per 100 square centimeters for low-contact, indoor, impervious solid surfaces.

The volatile organics analysis indicates some contaminants are present on site. The first composite sample (B-1, B-2 & B-3) was found to contain a relatively low amount of toluene (11 ppb) and does not suggest a significant problem exists in the three areas where the sample was collected. Additionally no visual or olfactory evidence of volatile organics contamination was observed during drilling.

The second composite sample (B-7, B-8, & B-9) was found to contain relatively low levels of benzene, toluene, ethylbenzene and xylenes (BETX). Sample location B-7 was chosen in an area where records indicate an underground storage tank was located. Sample location B-8 is in the masonry building where drums of diesel fuel were stored. The source of the BETX parameters can be from diesel fuel used in the underground tanks or drums. The levels encountered, however do not appear substantial enough to warrant remediation. For example, cleanup objectives for leaking petroleum underground storage tanks (LUST cleanup objectives) are 25 ppb for benzene and 16,025 ppb for total BETX. The levels encountered were well below these guidelines.

Two samples were made from three borings made around the three above ground oil tanks. The drums of diesel fuel stored in the building were moved into this area. Oil and spilled diesel fuel were observed on the concrete surface. There was sufficient crackage in the floor to suggest that potential contamination of the soil below may have occurred. The borings were performed around the tank/drum area, and not directly over the spill areas. If gross contamination were present, significant contamination would have likely been detected in the perimeter samples. During

906riel laboratories, ltd.

3321 South Pulaski Road, Chicago, Illinois Friday, April 12, 1991

sampling no visual or olfactory evidence of contamination was observed. The analysis on the composite sample of B-4 and B-6 indicated 29 ppb of toluene was detected. The sample analyzed from sample location B-5 was found to contain 6 ppb of benzene and 20 ppb tetrachloroethene were detected. The benzene and toluene are typical components of petroleum products, however the tetrachloroethene is not. Chlorinated hydrocarbons are typically used as de-greasers and solvents. The maintenance shop is located west of the tanks/drums, and sampling location B-5 is located at the entrance to the shop. The tetrachloroethene may be from a solvent based cleaner spilled in this area.

The highest levels of volatile organic contamination was encountered in the samples collected near the outside above ground storage tanks. Both visual and olfactory evidence of soil contamination were observed during drilling. A sample of the contaminated soil directly below the tanks was submitted for analysis. Less than 100 ppb of benzene and less than 1,843 ppb of total BETX were detected (the detection limits for this sample had to be raised to 100 ppb due to interference from heavier compounds in the diesel fuel). The LUST cleanup objectives do not specifically apply to these tanks because they are above ground tanks, however the LUST objectives can be used as a guideline.

The Illinois Environmental Protection Agency (IEPA) has set cleanup objectives for petroleum related leaking underground storage tank (LUST) sites. The LUST cleanup objectives are as follows:

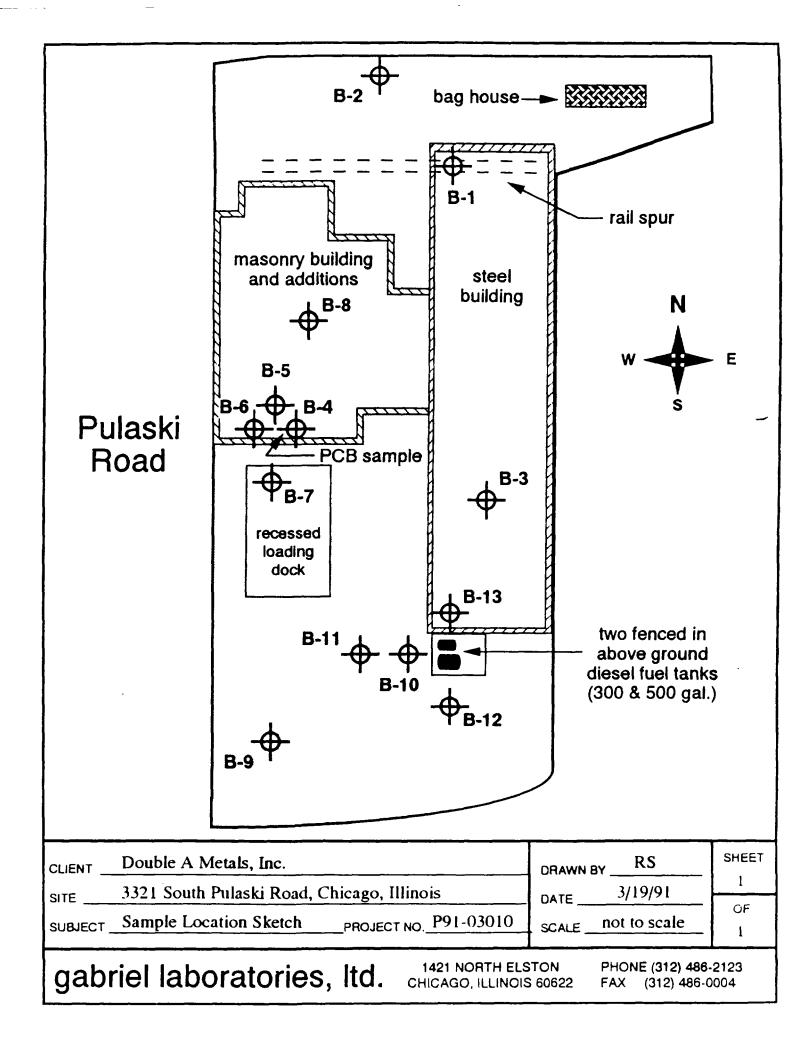
- 1) Removal of all visibly contaminated soil.
- 2) Removal of all soil exhibiting petroleum odors.
- 3) Benzene 0.025 ppm (25 ppb)
- 4) Benzene, Ethylbenzene, Toluene, and Xylene (BETX); Benzene plus the total of the other three 16.025 ppm (16,025 ppb)

The analytical results indicate the levels of Benzene and total BETX are below the LUST cleanup objectives in the samples collected around the above ground diesel tanks (the surface sample may be an exception with the detection limit set at 100 ppb for benzene). However, a noticeable petroleum odor was observed at boring location B-10 (located ten feet west of the tanks). the odor subsided once a depth of ten feet was obtained. Boring location B-11 (20 feet west of the tanks) was observed to have mild petroleum odor. No petroleum odor was observed at boring locations B-12 and B-13, located south and north of the tarks, respectively. Due to physical obstructions no sample was collected east of the tanks, however, the ground in this area

90briel laboratories, ltd.

3321 South Pulaski Road, Chicago, Illinois Friday, April 12, 1991

tends to slope toward the west, and the surface runoff would tend to go in that direction.


Gabriel recommends performing voluntary cleanup of the contaminated soil beneath the diesel fuel tanks. The soil should be excavated until the remaining soil meets the generic cleanup objectives, at least within reason (the requirement for removing all soil exhibiting petroleum odors is somewhat subjective). Roughly 30 to 50 cubic yards of contaminated soil would need to be removed (additional borings would be necessary to get a more accurate estimate). A remediation contractor can be contacted for estimated cleanup costs.

Since the above ground diesel fuel tanks are no longer in use no preventative action for future spills is necessary (i.e. a spill dike). However, a spill dike or some other form of secondary containment is suggested for the oil tanks and diesel fuel drums stored inside the building. Spillage was observed in the floor of the building from product transfer. The cost of secondary containment is easily justified when considering the relatively high cost of soil remediation.

Gabriel laboratories, ltd. _ Environmental & Energy Services

3321 South Pulaski Road, Chicago, Illinois Friday, April 12, 1991

V. Appendix

3321 South Pulaski Road, Chicago, Illinois Friday, April 12, 1991

Results of Metals Analysis

Gabriel Log Number: 2987-91 Sample Date: 3/11/91 Date Recieved: 3/11/91

Sample Description: Composite sample from boring locations

B-1, B-2, & B-3

<u>Parameter</u>	Total (ppm)
arsenic	<10
barium	62
cadmium	25
chromium	21
lead	84
mercury	0.034
selenium	<10
silver	<2.5

Analysis performed according to <u>Standard Methods</u>, latest edition; <u>USEPA Test Methods for Evaluating Solid Wastes</u>, SW-846, 1986 and ASTM Methods.

3321 South Pulaski Road, Chicago, Illinois Friday, April 12, 1991

Results of Metals Analysis

Gabriel Log Number: 2988-91 Sample Date: 3/11/91 Date Recieved: 3/11/91

Sample Description: Composite sample from boring locations

B-7, B-8, & B-9

<u>Parameter</u>	Total (ppm)
arsenic	<10
barium	114
cadmium	11
chromium	23
lead	99
mercury	0.117
selenium	<10
silver	<2.5

Analysis performed according to <u>Standard Methods</u>, latest edition; <u>USEPA Test Methods for Evaluating Solid Wastes</u>, SW-846, 1986 and ASTM Methods.

3100 SOUTH PULASKI ROAD, CHICAGO, ILLINOIS

CERTIFICATE OF ANALYSIS

DATE OF REPORT:

April 4, 1991

DATE SAMPLE RECEIVED:

April 2, 1991

TYPE OF SAMPLE:

Wipe Sample From Beneath 300 gal

ASTS

LABORATORY NUMBER:

3880-91

ANALYTICAL RESULTS

Aroclor 1016	ND	9	10.0	ug/wipe
Arcclor 1221	ND	<u>a</u>	10.0	ug/wipe
Aroclor 1232	ND	9	10.0	ug/wipe
Aroclor 1242	ND	9	10.0	ug/wipe
Aroclor 1248	ND	9	10.0	ug/wipe
Aroclor 1254	ND	9	10.0	ug/wipe
Aroclor 1260	ND	e	10.0	ug/wipe

ND = Not Detected

1421 North Elston Ave. Chicago, Illinois 60622 Phone (312) 486-2123 Fax (312) 486-0004

Úrganics Analysis Report **BTEX CÚMPŮUNÚS**

 GABRIEL LAB NUMBER:
 2987-91
 FILE
 Ú:\2700\ĎATAZ\3CAÚÓ48.raw

 GLIÉNI
 3321 S. PULASKI
 ĎATE ÚF ANALYŠĪS:
 3/19/91

 DATE
 ÚF ANALYŠĪS:
 DP

 MATRĪX:
 SÚIL
 METHOÚ
 8020

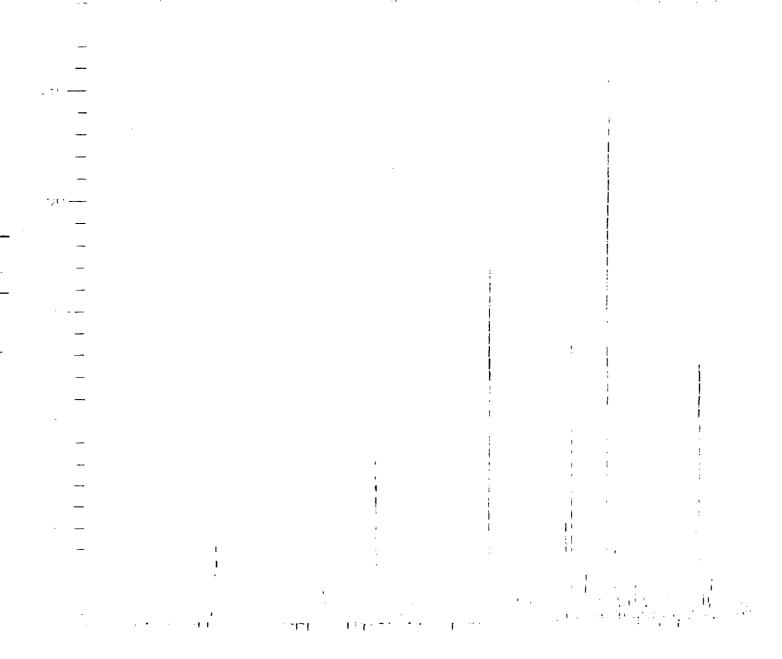
 SAMPLE ĎESCRĪPTĪÚN:
 B-1, B-2, B-3
 ĎIL FACTÓR.
 5

Locura	, PUL	, ת	とっひしょう	; comments
; senzene	; ; ;	5	BUL	;Surrogate ; Recoveries; Actual ; *ŘEU
, ĩoiuene	 	5	11	
; Etnyîpenzene	• : •	5	RAL	¡PUL = Practical Quantitation Limit ; BUL = Below Quantitation Limit
;m+p kylenes		5 ;	BUL	E = Exceeded Calibration Hange Units reported as: ug/kg
, o-kylene ,	, 1	5 ;	RAL	is = Compound was detected in UC Blank
4	!	! :		(All Standards, Blanks, and Samples
		: :		connected in series. No second column confirmation was performed.
:				

1421 North Elston Ave. Chicago, Illinois 60622 Phone (312) 486-2123 Fax (312) 486-0004

organics	Analysis Report
*¥6Ú1	Compounds**

Compound	PÜL	RESULTS	Comments		
Trichlorofluoromethane ;	25	; BUL	Surrogate		:
1,1,-uichloroethene	25	BUL	Recoveries	Actuai	#REC
Methylene Chloride	25	BÚL	;=========	========	+============
Trans-1,2 Dichloroethene;	5	BUL	4.7	6.3	75 %
1,1 Uichioroethane	5	BUL	;		+
Chloroform	5	BUL	Pul = Pract	ical Quant	itation Limit
1,1,1-Trichioroethane	5	BUL	BUL = Below	, Quantitat	ion Limit
Carbon Tetrachioride	5	BÜL	E = Excee	d Calibrat	ton Range
1,2-01chloroethane	5	BUL	B = Comp	ound was d	etected in QC Blank
Trichioroethene	5	BUL	Units repor	ted as:	ug/kg
1.2-Ulchloropropane ;	5	BUL			
Bromogicaloromethane	5	BÚL			
2-Unioroetnyi vinyi Ether;	5	BUL	All Stangar	os.Blanks.	and Samples
Uls-1,3-Dichioropropene	5	BUL	were analyzed using 2-08-624 columns		
frans-1,3-bichioropropene;	5	BUL			No second column
1,1,2-Trichioroethane	5	BUL	confirmation		
ietrachioroethene	5	BUL			
Ulbromochioromethane	5	BUL			
Unioropenzene ;	5	BUL	i 1		
Bromoform	5	RAL	i		
1.1.2.2-Tetrachicroethane;	5	RAIL	1		
1.3-uichioropenzene ,	5	BUL	i		
1.4-uichioropenzene ;	5	; BUL	ı		
1.2-uichioropenzene ;	5	JUL	· 1		
;		i	· !		
:			:		
i					
;					
;		i.	·		
		•			


Organics Analysis Report **BTEX COMPOUNDS**

GABRIEL LAB NUMBER:.... 2988-91 UATE..... 2U-Mar 1991 MATRIX:.... SOIL SAMPLE DESCRIPTION:.... B-7, B-8, B-9 DIL FAUTOR..... 5

DATE OF ANALYSIS:... 3/20/91 ANALYST :.... DP |METHÓD :.... 8020

ا يَانِ ا	RESULTS	Comments			
5	ý	Surrogate Recoveries Actual %REC			
5	18	3.907 6.3 62.01 %			
5	6	PUL = Practical Quantitation Limit BUL = Below Quantitation Limit			
5	; ;	E = Exceeded Calibration Range Units reported as: ug/kg			
5	RAL	B = Compound was detected in QC Blank			
: :	1 ; 1	All Standards, Blanks, and Samples			
;	:	were analyzed using 2-08-524 columns connected in series. No second column			
: : :	: : !	confirmation was performed.			
	5 5	5 9 5 18 5 0 5 9			

And the second of the second o

Ùrganics Analysis Report **6Ù1 Compounds**

GABRĪĒL LAB NUMBĒR	2988-91	FILE	Ú:\2700\0ATA2\3CA0038.raw
CLIENT	3321 S. PULASKĪ	DATE OF ANALYSIS	3/20/91
ÛATE	Ú3/2Ú	ANALYST	ŪP
MATRIX	SÚĪL	METOD	601
SAMPLE DESCRIPTION	₿-7, ₿-8, ₿-9	UIL FAUT	5

Compound	PÚL	RESULTS	Comments
Trichiorofiuoromethane		; RAT	Surrogate
:1,1Ulchioroethene ;	25	BUL	Recoveries; Actual SREC
Methylene Unioride	25	BUL	;::::::::::::::::::::::::::::::::::::::
Trans-1,2 Ulchioroethene ;	5	BUL	;
1,1 Ulchioroethane	5	BUL	
Chloroform	5	BUL	PUL = Practical Quantitation Limit
1.1.1-Trichioroethane	Š	BUL	BUL = Below Quantitation Limit
Carbon Tetrachioride	5	BÜL	E = Exceed Calibration Range
1,2-Dichioroethane	5	BUL	B = Compound was detected in QC Blank
Trichioroethene	5	BÜL	Units reported as : ug/kg
1,2-bichloropropane	5	BUL	
Bromodichloromethane	5	BUL	
2-Chioroethyi Vinyi Ether;	5	BUL	All Standards, Blanks, and Samples
Cis-1,3-Dichioropropene	Š	BUL	were analyzed using 2-08-624 columns
Trans-1,3-uichioropropene	ō	BUL	connected in series. No second column
1,1,2-Trichioroethane	5	BÚL	confirmation was performed.
Tetrachloroethene	5	BUL	
Ulbromochioromethane :	5	BÜL	
Unioropenzene	5	BÜL	
Bromoform	5	BUL	
1,1,2,2~Tetrachioroethane;	ל	BUL	;
1.3-utchioropenzene	5	BUL	
1.4-uichioropenzene	っ	BUL	
יט-1,1 cnioropenzene	כ	: BUL	
		•	
<u>'</u>			

Organics Analysis Report **BTEX COMPOUNDS**

 GABRIEL LAB NUMBER:
 2989-91

 CLIENT
 3321 S PULASKI

 DATE
 21-Mar 1991

 MATRIX:
 SOIL

 SAMPLE DESCRIPTION:
 AST SURFACE

| DATE OF ANALYSIS:... 3/20/91 | ANALYST :..... DP | METHOD :..... 80/20 | DIE FACTOR 100

FILE.... C:\2700\DATAZ\3CAU059.ram

Compound	: POL	(RESULIS	(Lomments	:
Benzene	1ÚU	: RAT	Surrogate	:
loluene	100	: RÁT		- +
Lthylbenzene	100	213	PGL = Practical Quantitation Limit BGL = Below Quantitation Limit	- - -
m+p Aylenes	TÚU	724	E = Exceeded Calibration Range Units reported as: ug/kg	;
o-Xylene	100	īÜb	B = Compound was detected in WC Blank	; -+
			All Standards, Blanks, and Samples were analyzed using 2-DB-624 columns connected in series. No second column	
		· •	contirmation was performed.	;

----1

Ürganics Anaiysis Report **601 Compounds**

; Compound	PÜL	RESULTS	Comments
,irichiorofluoromethane	250	; BUL	Surrogate
; 1, 1, -Ū1cnloroetnene	250	SUL	¡Recoveries; Actuai ¡%REC ;
; Metnylene Unioride	250	ROL	
Trans-1,2 Ulchloroethene	5 U	BÜL	
11,1 Ulchioroethane	5U	BUL	
Chloroform	5Ú	BUL	PuL ≈ Practical Quantitation Limit
1.1,1-Trichioroethane	5Ú	BUL	BUL = Below Quantitation Limit
; Carbon Tetrachloride ;	5 u	BUL	¡Ē = Exceed Calibration Range ;
;1,2-01chloroethane	5U	BUL	;B = Compound was detected in QC Blank;
; irrchloroethene ;	5 u	BUL	;Units reported as : ug/kg ;
;1,2-uichloropropane ;	5U	ROL	
; bromodichloromethane ;	5Ù	BUL	
;2-Unioroethyl vinyl Ether;	50	RUL	All Standards, Blanks, and Samples
;Uls-1,3-Ulchloropropene ;	5ับ	BUL	were analyzed using 2-08-524 columns
; Trans-1, 3-U1ch Toropropene;	5 0	RUL	connected in series. No second column
;1,1,2-Trichioroethane	5 u	BUL	confirmation was performed.
; Tetrachioroethene ;	วับ	BUL	
;uipromocnioromethane ;	5 U	BUL	į
:unioropenzene ;	วับ	RUL	
,Bromoform ,	śυ	BUL	
.1,1.2,2-letrachloroethane;	5 0	BUL	
:1.3-ulchloropenzene :	วบ	BUL	
;1,4-uichioropenzene ;	50	BUL	
,1,2-01chioropenzene ,	÷υ	RUL	
,			
,			
,			
		,	
		:	
'		•	•

•

Úrganics Anaīysis Řeport **BTEX CÚMPUUNÚŠ**

 GABRIEL LAB NUMBER:
 2990-91

 ULIENT
 3321 S. PULASKI

 DATE
 20-mar

 1991

 DATE OF ANALYSIS:...
 3/20/91

 ANALYST

 0P

 METHOD

 8020

 DIL FACTOR
 5

Surrogate Surrogate Surrogate Surrogate Surrogate Second column Surrogate Surrogate Second column Confirmation was performed.	; compound	; PUL	;ŘÉSULĪŠ	comments
Etnylbenzene 5 Bul Pül = Practical Quantitation Limit Bul = Below Quantitation Limit m+p xylenes 5 Bul E = Exceeded Calibration Range Units reported as: ug/kg O-xylene 5 Bul B = Compound was detected in QU Blank All Standards, Blanks, and Samples Were analyzed using 2-08-624 columns connected in series. No second column	; ; ; senzene	5	6	. •
BUL = Below Quantitation Limit m+p xylenes 5 BUL E = Exceeded Calibration Range Units reported as: ug/kg 6-Xylene 5 BUL Below Quantitation Limit E = Exceeded Calibration Range Units reported as: ug/kg BUL Below Quantitation Limit E = Exceeded Calibration Range Units reported as: ug/kg BUL Below Quantitation Limit E = Exceeded Calibration Range Units reported as: ug/kg BUL Below Quantitation Limit E = Exceeded Calibration Range Units reported as: ug/kg BUL Below Quantitation Limit E = Exceeded Calibration Range Units reported as: ug/kg BUL Below Quantitation Limit E = Exceeded Calibration Range Units reported as: ug/kg BUL Below Quantitation Limit E = Exceeded Calibration Range Units reported as: ug/kg BUL Below Quantitation Limit E = Exceeded Calibration Range Units reported as: ug/kg BUL Below Quantitation Limit E = Exceeded Calibration Range Units reported as: ug/kg BUL Below Quantitation Limit E = Exceeded Calibration Range Units reported as: ug/kg BUL Below Quantitation Limit E = Exceeded Calibration Range Units reported as: ug/kg BUL Below Quantitation Limit E = Exceeded Calibration Range Units reported as: ug/kg BUL Below Quantitation Limit E = Exceeded Calibration Range Units reported as: ug/kg BUL Below Quantitation Limit E = Exceeded Calibration Range Units reported as: ug/kg BUL Below Quantitation Limit E = Exceeded Calibration Range Units reported as: ug/kg BUL Below Quantitation Range BUL Below Quantitation Range Units reported as: ug/kg BUL Below Quantitation Range BUL Below Quantitation Range BUL Below	Toluene	5	BÚL	
m+p xylenes 5 BUL E = Exceeded Calibration Range Units reported as: ug/kg 0-xylene 5 BUL B = Compound was detected in QC Blank All Standards, Blanks, and Samples Were analyzed using 2-00-624 columns connected in series. No second column	Etnylbenzene	5	BUL	
o-xylene 5 BûL B = Compound was detected in uc Blank All Standards, Blanks, and Samples were analyzed using 2-08-624 columns connected in series. No second column	m+p xylenes	5	BUL	E = Exceeded Calibration Range
were analyzed using 2-08-624 columns connected in series. No second column	o-xylene	5	RÕL	
			; ;	
		; ; ; ;		

e 10 er erae Tomb

Örganics Analysis Report **6Ö1 Compounds**

; Compound ;	PÚL	, RESULTS	; Comments			
;[rich]orofluoromethane ;	25	BUL	Surrogate			
;1.1ulchioroethene	25	BUL	Recovertes; Actual RREC			
; metnylene Unioride ;	25	RUL	========= ========================			
;Trans-1,2 Dichioroethene ;	5	BUL				
1,1 Dichloroethane ;	5	BUL				
Chloroform	5	BUL	¡PūL = Practical Quantitation Limit			
;1,1,1-Trichloroethane ;	5	BUL	BUL = Below Quantitation Limit			
¡Carbon Tetrachloride ;	5	BUL	¡E = Exceed Calibration Range			
;1,2-bichloroethane ;	5	ŘÚL	iB = Compound was detected in QC Blank			
; îrichioroethene ;	5	RUL	Units reported as : ug/kg			
1.2-Ulchloropropane	5	BUL				
Bromodichioromethane	5	BÚL				
;2-Chloroethyl vinyl Ether;	5	BUL	All Standards, Blanks, and Samples			
;Uls-1,3-Dichloropropene	5	BUL	;were analyzed using 2-DB-624 columns			
Trans-1,3-Ulchioropropene	5	BUL	connected in series. No second column			
;1,1,2-Trichloroethane	5	BUL	confirmation was performed.			
; ĭetracnioroetnene ;	5	; 2Ú	·			
;uipromochioromethane	5	ROL				
;uniorobenzene ;	5	BUL				
Bromoform	5	BUL				
<pre>;1,1,2,2-TetracnToroetnane;</pre>	5	BUL	;			
:1.3-uichloropenzene ;	5	; EUL	1			
:1,4-Uichioropenzene	5	BUL				
,1.2-Uichlorobenzene ,	5	EUL	:			
		:				
i		ı				
1			•			
		1	•			
·						

 $\frac{1}{2} \frac{1}{2} \frac{1}$

Úrganics Analysis Report **BTEX CÚMPÚUNŪS**

 GABRIEL LAB NUMBER:
 2991-91
 FILE
 C:\2700\DATAZ\3CAUU45.raw

 CLIENT.
 3321 S. PULASKI
 DATE OF ANALYSIS:
 3/20/91

 DATE
 DATE
 DATE
 DATE

 MATRIX:
 SOIL
 METHOD
 8020

 SAMPLE DESCRIPTION:
 B-4, B-6
 DIL FACTOR
 5

: Compouna	: PUL	;RESULTS	Comments
; ; ; ; ; ; ;	5	ROL	Surrogate Recoveries Actual %REC
loluene	5	29	
; Etny i benze ne	5	BÜL	PÚL = Practical Quantitation Limit
m+p xylenes	5	BUL	E = Exceeded Calibration Range Units reported as: ug/kg
o-xy iene	5	BÜL	B = Compound was detected in QC Blank
	• • •	! : !	All Standards, Blanks, and Samples
	1 : !	1 2 1	were analyzed using 2-08-624 columns connected in series. No second column
! !	; ;	:	confirmation was performed.

	() () () () () () () () () ()					
				i i		
_				T.		
				1		
-						
				1		
_						
				1		
-				1		
- 				1		
_						
1					1	
_				1	į	
				i i		
_						
→				1	·	
_				:	1	1
· ·				:		•
· -				,		H)
 -						⁶ 1.
	:	and the second of the second o		, <u></u> 1		1. 1. 1. 1. 1. 1.
			1			
					<u></u>	
			•			

Ürganics Analysis Report **bùl Compounds**

Compound	PÜL	RESULTS	Comments
Trichiorofluoromethane		BÚL	Surrogate
1.1,-úlchloroethene	25	BUL	Recoveries; Actual (MREC
metnylene Unioride	25	BUL	
Trans-1,2 Dichloroethene	5	BÚL	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
1,1 Dichioroethane	5	BUL	
chloroform	5	BÚL	PUL = Practical Quantitation Limit
1,1,1-Trichloroethane	5	BUL	Bul = Below Quantitation Limit
Carbon Tetrachioride	5	BÜL	E = Exceed Calibration Range
1,2-uichioroethane	5	BÚL	iß = Compound was detected in QC Blank
Trichioroethene	5	BUL	Units reported as : ug/kg
1,2-Uichioropropane ;	5	BUL	
<pre>bromodichioromethane</pre>	5	BUL	
2-Unioroetnyi vinyi Etner;	5	BÜL	All Standards, Blanks, and Samples
Cis-1,3-Dichioropropene	Š	RUL	were analyzed using 2-08-624 columns
Trans-1,3-Uichioropropene;	5	BUL	connected in series. No second column
1,1,2-TrichToroethane	5	BUL	confirmation was performed.
Tetrachioroethene	5	BUL	; !
ûlpromochloromethane ;	5	RUL	; !
Unioropenzene ;	5	ROL	
bromoform	5	BUL	
1.1.2.2-Tetrachioroethane;	ל	BUL	
1.3-ulchioropenzene	5	BUL	:
1,4-ulchioropenzene	5	, BUL	· i
1.2-wichloropenzene ;	5	RUL	· !
i		:	
i		1	
i			
;		1	
		·	
4		· 1	
		+	-+

And the second of the second o

	·	•	•		 	ar ar		e estados Societados Societados	* . . •		·	:
				- :	,' · · · · ·		i Li	; - -				
	-											
	- :: -											
	~ 											
	7.											
·	- -		† 									
	~		•		;			1				
	٠				· · ·							-
						-	. 12 					
			•							:		

Úrganics Analysis Report **BTEX CÚMPÚUNĎS**

 GABRÍEL LAB NUMBER:
 2992-91

 CLIENÍ
 3321 S. PULASKI

 DATE
 20-mar 1991

 MATRIX:
 SOIL

 SAMPLE DESCRIPTION:
 B-10

| FILE...... C:\2700\DATA2\3CA0041.raw | DATE OF ANALYSIS:... 3/20/91 | ANALYSI :.... DP | METHOD :..... 8020 | DIL FACTOR..... 5

Compound	PUL		ŘESULĪS	Comments				
Benzene		5	BÚL	Surrogate Recoveries Actual %REC				
Toluene	1	5	13					
ttny i penzene	•	5	RÜL	Pul = Practical Quantitation Limit Bul = Below Quantitation Limit				
m+p xylenes	:	5	5	E = Exceeded Calibration Range Units reported as: ug/kg				
o-xyiene		5	BUL	;8 = Compound was detected in WC Blank				
			 	All Standards, Blanks, and Samples were analyzed using 2-08-624 columns connected in series. No second column				
				confirmation was performed.				

188 of the Alight Linds

Part State

Fig. 5

Part State State

Urganics Analysis Report **bul Compounds**

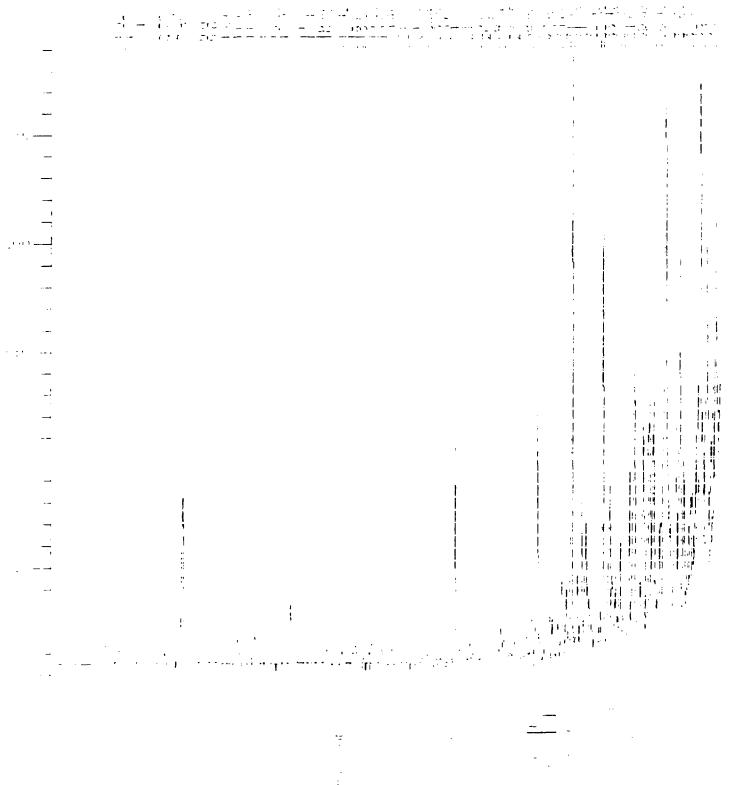
GABRIEL LAB NUMBER 2	299 2 -91	;FILE	U:\27UU\DATA2\4CAUU41.raw
ULIENT 3	3321 Š. PÚLAŠKĪ	ÜATĒ ÜF ANALYSĪS	3/20/91
ÚATĖ	03/20	ANALYST	ÛP
MATRIX S	SUĪL	MĒTŪŪ	601
SAMPLÉ DÉSURIPTION	B-1U	ŪĪL FACT	5

Compound	PùL	;RESULTS	Comments
:Irichiorofluoromethane• ;	25	BÜL	Surrogate
;1.1uichioroethene	25	BUL	(Recoveries; Actual (SREC)
Metnylene Unioride	25	BUL	;========;=============================
; Trans-1,2 Oichioroethene ;	5	BUL	
1,1 Dichioroethane	5	BÜL	<u> </u>
; Unioroform ;	5	BÚL	¡PUL = Practical quantitation Limit ;
1,1,1-TrichToroethane	5	BUL	BUL = Below Quantitation Limit
; Carpon Tetrachioride ;	5	BÚL	¡E = Exceed Calibration Range ;
11,2-U1chloroethane	5	BUL	<pre>;B = Compound was detected in QC Blank;</pre>
¡Trichioroethene	5	; 8	junits reported as : ug/kg ;
;1,2-U1cnToropropane ;	5	BUL	
:Bromodichioromethane ;	5	BUL	
;2-Unioroetnyl Vinyl Etner;	5	BUL	[All Standards, Blanks, and Samples]
;Uls-1,3-Ulchioropropene	5	BUL	were analyzed using 2-08-624 columns
;īrans-1,3-ūichīoropropene;	5	BUL	connected in series. No second column
;1,1,2-irichioroethane	5	BUL	confirmation was performed.
; ietrachioroethene ;	5	BUL	
; promocnioromethane ;	5	BUL	
, Unioropenzene :	5	, ROL	
.srcmoform ;	5	BUL	
<pre>:1,1,2,2-fetrachioroethane;</pre>	5	BUL	
.1,3-uichioropenzene ;	5	JUL	· i
, ו, 4-uichlorobenzene	5	; EUL	· · · · · · · · · · · · · · · · · · ·
.1.2-uichiorobenzene	5	, ROL	
		i	i
·			i
,			i i
		;	1
		1	s

Úrganics Analysis Report **BTEX CÚMPÚUNŪŠ**

 GABRIEL LAB NUMBER:
 2993-91
 FILE
 U:\2700\DATAZ\36AUU39.raw

 CLIENT
 3321 S. PULASKI
 DATE OF ANALYSIS:
 3/20/91


 UATE
 20-mar 1991
 ANALYST
 DP

 MATRIX:
 SOIL
 METHOD
 8020

 SAMPLE DESURIPTION:
 8-11, 8-12, 8-13
 DIL FACTOR
 5

Compound	PUL	ŘĒŠULĪS	Comments					
Benzene	5	ŖŨĹ	Surrogate					
ioîuene	5		4.148 6.3 65.84 %					
Etny ibenzene	5		¡PÚL = Practical Quantitation Limit ¡BÚL = Below Quantitation Limit					
m+o xylenes	5	BÜL	E = Exceeded Calibration Range Units reported as: ug/kg					
;o-xyi ene	5	BUL	is ≈ Compound was detected in QC slank					
1		1 : : : : : : :	All Standards, Blanks, and Samples were analyzed using 2-06-624 columns connected in series. No second column confirmation was performed.					

1 -

. : · · ·

Urganics Analysis Report ***601 Compounds**

Compound	PÜL	RESULTS	Comments					
Trichlorofluoromethane	25	BÜL	Surrogate					
1,1,-Uichloroethene	25	BUL	¡Recoveries; Actual ;%REC					
Methylene Unioride	25	BÚL	_;=====================================					
Trans-1,2 Uichloroethene	5	BUL						
1,1 Dichloroethane	5	BÚL						
Unioroform	5	BUL	¡PÚL = Practical Quantitation Limit					
1,1,1-TrichToroethane	5	BÚL	;BQL = Below Quantitation Limit ;					
Carbon Tetrachioride	5	BUL	E = Exceed Calibration Range					
1,2-uichioroethane	5	BUL	(B) = Compound was detected in QC Blank;					
Irichioroethene ;	5	BUL	Units reported as : ug/kg					
1.2-Uichioropropane	5	RUL						
Bromodichioromethane	5	ROL						
2-Unioroetnyi vinyi Etner	5	BUL	All Standards, Blanks, and Samples					
Uls-1,3-ülchloropropene	5	BUL	were analyzed using 2-08-624 columns					
Trans-1, 3-u1chioropropene;	5	BUL	connected in series, No second column					
1,1,2-Trichioroethane	5	RUL	confirmation was performed.					
Tetrachioroethene	5	BUL						
Ulbromochioromethane	5	BUL						
unioropenzene	5	RUL						
Bromoform	כ	BUL						
1,1,2,2-Tetrachioroethane;	5	BUL						
1.3-ulchioropenzene	5	RUL						
1,4-uichioropenzene	5	RUL						
1,2-uicnioropenzene	5	RUL						
		I						
,		: 1						
1		: !						
		: !						
		!						

40 (2) etch (1 %) (40 %

		· ·		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>-</u>	7 - 2 7 - 4	12 1	er (j. – 15. de jager – 1955) 16. de jager – 1965) 16. de jager – 1965)
	— - :							
	; 							
	4							
	7							
	<u>21, 1)</u> }							
_	 i							
-								
1	<u></u>							
-	ال — (دور) ال							
<u>-</u>	-							
	- !							
_		i 10 10						
	_i	;; ;;						
	 -							
			ı					
		1 -						- ~· T ~·······
				 	- •		_	1 .